
Skip to content

Page 1

Skip to contentInter-module RPC usage

There are two methods implemented for inter-module RPC: moduleMethod and

moduleMethodResponse . When using moduleMethod there is one huge difference to all other RPC

methods: The call is asynchronous. This means, you won't get a response directly to moduleMethod .

Instead when the request is finished, moduleMethodResponse is called as a request on the

originating client.

There is never a response received to moduleMethod . Instead moduleMethodResponse is called on the

originating module.

The reason for this implementation is, that a request might take a long time to process. This

hanging request then blocks a lot of processing threads on multiple processes or services. This

again might cause Sensaru Cloud to hang.

Routing

Routing packets within Sensaru Cloud is not done by IP address, but by module and module client

ID. moduleMethod and moduleMethodResponse are used as a container for the actual RPC request. So

these methods are sort of our equivalent of an IP header. For module to module communication,

routing requires only the module ID. Clients connected to modules (i. e. module clients)

additionally require the module client ID for routing. So we have four possible routing

combinations:

Warning

Direction Description

Module to

module

When moduleMethod is called from a module on another module, we only need

the source module ID and the destination module ID for routing.

Module to

module client

When moduleMethod is called from a module on a client of another module, we

need the source module ID, the destination module ID and the destination

module client ID for routing.

Module client to

module

When moduleMethod is called from a module client on a module, we need the

source module ID, the source module client ID and the destination module ID

for routing.

Inter-module RPC usage Page 2

Skip to content

One important thing to note is that a module client is not allowed to put the source module client

ID in moduleMethod if it is in an unsecure location or cannot be trusted. In this case this must be

done in the module the client is connected to. Here the module client ID can be verified and

placed into moduleMethod .

moduleMethod

Calling module method

Whenever you want to call a RPC method on another module or module client, you need to execute

moduleMethod . moduleMethod has the following signature:

The signature (obviously) is the same on the sender and receiver side (except in homegear-

cloudconnect which has a simplified signature). The sender does not need to fill all parameters

though, as most of them are filled in transit by other services.

Direction Description

Module client to

module client

When moduleMethod is called from a module client on another module client,

we need the source module ID, the source module client ID, the destination

module ID and the destination module client ID for routing.

void moduleMethod(
String destinationModuleId,
String destinationModuleClientId = "",
String senderModuleId,
String senderModuleClientId = "",
Struct userId = [],
Struct modulePrincipalId = {},
Struct homeClientUsers = {},
Struct homeClients = {},
String methodName,
Array parameters = [],
String ticketId,
Integer qos

)

Parameter Set by Optional Type Description

destinationModuleId Sender no String The ID of the module to call the

RPC method in (e. g. c1-device-

management)

destinationModuleClientId Sender yes String

moduleMethod Page 3

Skip to contentParameter Set by Optional Type Description

The ID of the module client to

call the RPC method in (e. g.

d1faa8d0-2db4-11ea-

af75-674069e60b74_1000.1.1_1). A

module client as a service

connected to a module, e. g.

edge clients connected to c1-

proxy .

senderModuleId c1-core no String The ID of the sending module.

This parameter is filled (or

overridden) in c1-core with the

ID of the sending module.

senderModuleClientId Module yes String The ID of the sending module

client. Needs to be set to a

verified value by the module.

This can't be checked by

c1-core . The value is only

required for requests from

module clients.

userId Sender yes Struct Filled with the ID of the

sending user. For requests

coming from UIs to c1-core this

is filled with the logged in user.

This parameter can be set by

any sender. Just make sure the

information is verified, as the

validity cannot be checked by

c1-core .

modulePrincipalId c1-

proxy /

c1-core

yes Struct Filled with the edge client's

principal ID for requests

coming from edge clients and

with and with the module's

principal ID for requests

coming from modules. The

latter is relevant, because

modules can be associated to a

principal and access to other

Calling module method Page 4

Skip to content

Example

To for example call getVersion() on a edge client a request might look like this:

Parameter Set by Optional Type Description

principals must be denied in

this case.

homeClientUsers c1-core yes Struct Filled with the users associated

to the edge client specified with

homeClientId .

homeClients c1-core yes Struct Filled with the edge client IDs

associated to the user specified

with userId .

methodName Sender no String The RPC method to call.

parameters Sender yes Array The parameters to pass to the

RPC method.

ticketId Sender no String This parameter is like a

password. Fill this parameter

with fully random string of

appropriate length. Every

request requires a unique

ticket ID. When receiving

moduleMethodResponse , the

ticked ID must be matched.

qos Sender no Integer 0 to disable QoS . 1 causes the

RPC call to be cached until the

destination acknowledges the

request.

{
"id": 12,
"method": "moduleMethod",
"params": [

"c1-proxy",
"d1faa8d0-2db4-11ea-af75-674069e60b74_1000.1.1_1",
"",
"",
{},

Example Page 5

Skip to content

To call this method using c1-module-proxy , execute:

The response will be:

After this, moduleMethodResponse is called (as a request!).

When you're using c1-module-proxy , the response is returned directly in moduleMethod and

moduleMethodResponse is not called.

Receiving moduleMethod

When moduleMethod is called on a module (not a module client), c1-core invokes the actual method

within the moduleMethod call. This means, you will not receive a call to moduleMethod . So when

another service is calling the following on your module:

{},
{},
{},
"getVersion",
[],
"abcd",
0

]
}

$ curl -X POST -H 'Content-Type: application/json' -d '{"id":12,"method":"moduleMethod","params":["c1-
proxy", "d1faa8d0-2db4-11ea-af75-674069e60b74_1000.1.1_1", "", "", [], "", {}, {}, "getVersion", [], "abcd", 0]}'
http://localhost:8080

{"id":12,"jsonrpc":"2.0","result":null}

Warning

{
 "id": 12,
 "method": "moduleMethod",
 "params": [
 "c1-proxy",
 "d1faa8d0-2db4-11ea-af75-674069e60b74_1000.1.1_1",
 "",
 "",
 {},
 {},
 {},
 {},
 "getVersion",
 [],
 "abcd",
 0

Receiving moduleMethod Page 6

Skip to content

Then you will receive the following in your module:

moduleMethod and module clients

You are only required to implement moduleMethod within your module, when the module has

module clients. In this case c1-core does not invoke the wrapped method but passes moduleMethod

to your module. In your module you can then identify the endpoint and invoke the wrapped RPC

method directly as the routing information is not required anymore.

When receiving moduleMethod you will notice that all or most of the parameters have been filled.

moduleMethodResponse

moduleMethodResponse is sent after processing of a call to moduleMethod has finished. It has the

following signature:

As you can see, most parameters are the same as for moduleMethod . The only difference is that

methodName and parameters are replaced by response . The latter contains the result of the call to

the RPC method specified by methodName in moduleMethod . The ticked ID must be set to the one

from the moduleMethod call. Apart from that the same rules as for moduleMethod apply.

]
}

{
 "id": 12,
 "method": "getVersion",
 "params": [
 <verified metadata>
]
}

Note

void moduleMethodResponse(
String destinationModuleId,
String destinationModuleClientId = "",
String senderModuleId,
String senderModuleClientId = "",
Struct userId = {},
Struct modulePrincipalId = {},
Struct homeClientUsers = {},
Struct homeClients = {},
Mixed response,
String ticketId,
Integer qos

)

moduleMethodResponse Page 7

Skip to content
Example

An example request looks like this:

The response looks like this:

{
"id": 6,
"jsonrpc": "2.0",
"method": "moduleMethodResponse",
"params": [

"c1-proxy",
"d1faa8d0-2db4-11ea-af75-674069e60b74_1000.1.1_1",
"c1-device-management",
"",
{},
{},
{},
{},
"Homegear 0.8.0-3348",
""

]
}

{"id":6,"jsonrpc":"2.0","result":null}

Example Page 8

	Inter-module RPC usage
	Routing
	moduleMethod
	Calling module method
	Example
	Receiving moduleMethod
	moduleMethod and module clients

	moduleMethodResponse
	Example

