
Skip to content

Page 1

Skip to contentC1 Module Proxy

Introduction

C1 Core requires a constant TCP connection for bidirectional communication. This is hard to do

using standard webservers like Nginx or Apache . C1 Module Proxy is a small service taking over

exactly this task. It connects to C1 Core and handles all communication with it.

Installation

Using Docker

C1 Module Proxy provides a Docker template image with Ubuntu Focal and C1 Module Proxy

preinstalled. You can pull this image with:

Within the image you just need to modify the settings and files in /etc/c1-module-proxy/ (or mount

them).

Kubernetes

Here's a template you can use to deploy c1-module-proxy in Kubernetes. A secret with the C1 Core

client certificates must exist in the namespace in c1-core-client-tls :

docker pull gitit.de:5005/sensaru/c1/c1-module-proxy:latest

apiVersion: v1
kind: Service
metadata:
labels:
app: c1-module-proxy

name: c1-module-proxy
namespace: <your namespace>

spec:
clusterIP: None
ports:
- port: 80

selector:
app: c1-module-proxy

--
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: c1-module-proxy
namespace: <your namespace>

spec:

C1 Module Proxy Page 2

Skip to content

replicas: 1
minReadySeconds: 60
selector:
matchLabels:
app: c1-module-proxy

strategy:
rollingUpdate:
maxSurge: 0
maxUnavailable: 1

type: RollingUpdate
template:
metadata:
labels:
app: c1-module-proxy
network-policy: permit-local-traffic

spec:
containers:
- name: c1-module-proxy
image: gitit.de:5005/sensaru/c1/c1-module-proxy:latest
ports:
- containerPort: 80
protocol: TCP

livenessProbe:
failureThreshold: 3
initialDelaySeconds: 60
periodSeconds: 30
successThreshold: 1
tcpSocket:
port: 80

timeoutSeconds: 1
readinessProbe:
failureThreshold: 3
initialDelaySeconds: 5
periodSeconds: 30
successThreshold: 1
tcpSocket:
port: 80

timeoutSeconds: 1
imagePullPolicy: Always
volumeMounts:
- name: c1-module-proxy-config
mountPath: /etc/c1-module-proxy/main.conf
subPath: main.conf
readOnly: true

- name: c1-core-client-tls
mountPath: /etc/c1-module-proxy/c1-core-client-tls
readOnly: true

imagePullSecrets:
- name: gitit-de
volumes:
- name: c1-module-proxy-config
configMap:
defaultMode: 288
optional: false
name: c1-module-proxy-config

- name: c1-core-client-tls
secret:

Kubernetes Page 3

Skip to content

Install manually

Requirements

C1 Module Proxy requires

libhomegear-base and

libc1-module .

In addition

GnuTLS and

GCrypt

are required.

libhomegear-base can be downloaded as a Debian package for Debian and Ubuntu from https://

downloads.homegear.eu/nightlies/. libc1-module needs to be compiled manually.

Compilation of libc1-module requires g++ , automake and libtool . Under Debian and Ubuntu install

the packages automake, libtool and build-essential .

To compile libc1-module , clone the repository and execute:

GnuTLS and GCrypt can be installed by installing the packages gnutls-dev and libgcrypt-dev .

c1-module-proxy requires cmake for compilation, so this package needs to be installed as well.

Compilation

To compile C1 Module Proxy, clone the repository and execute:

defaultMode: 292
optional: false
secretName: c1-core-client-tls

apiVersion: v1
kind: ConfigMap
binaryData:
main.conf: <base64-encoded main.conf>

metadata:
name: c1-module-proxy-config
namespace: <your namespace>

•

•

•

•

cd /path/to/libc1-module
./makeRelease.sh

cd /path/to/c1-module-proxy
mkdir build

Install manually Page 4

Skip to content

Now create the settings and log directory and copy the example configuration:

Create a user, e. g. c1 to run the service as user. Then set permissions on the log directory:

Configure module

Module configuration is also done in C1 Module Proxy. You can find the required entries in /etc/c1-

module-proxy/main.conf in section Module information :

moduleName and moduleDescription are self-explaining.

moduleUiMenu is only required for modules providing an user interface for C1 Core. This creates a

menu entry in C1 Core with the provided information.

moduleUiCategory specifies under which category or heading the menu entry is sorted in.

moduleAppUiUrl is only required for modules that provide an user interface for the inhabitant

smartphone app. The specified page is opened when the module is selected in the app.

moduleAppUiCategory specifies under which category the app entry is placed.

moduleAclInfo is mandatory and contains the list of all RPC methods implemented by the module.

Every method must be added to the property rpcMethods and requires one of:

read : To execute this method, read permissions are required.

cd build
cmake ..
make -j4
strip c1-module-proxy
cp c1-module-proxy /usr/bin
cd ..

mkdir /etc/c1-module-proxy
cp misc/* /etc/c1-module-proxy
mkdir /var/log/c1

adduser --system --no-create-home --shell /bin/false --group c1
chown c1:c1 /var/log/c1

moduleName = {"de-DE": "Mein Modul", "en-US": "My module"}
moduleDescription = {"de-DE": "", "en-US": ""}
moduleUiMenu = {"label":{"de-DE":"Mein Modul","en-US":"My module"},"icon":"fontawesome/fa-
heartbeat","url":"https://my-module.sensaru.net"}
moduleUiCategory =
moduleAppUiUrl =
moduleAppUiCategory =
moduleAclInfo = {"version":1,"rpcMethods":{"method1":"read","method2":"write"}}
moduleEventSubscriptions = ["c1-core/bp/+/au/+/association"]

•

Configure module Page 5

Skip to content

write : To execute this method, write permissions are required.

event : To execute this method, event permissions are required.

admin : To execute this method, administrative permissions are required.

It is not required to specify REST methods here. REST methods are associated to the permissions

above by their HTTP method. Only read and write are supported at the moment for REST

methods.

When the ACL info is updated after the first registration, a restart of C1 Core is required after the

update to the ACL info. The reason is that C1 Core regards this info as static information and caches

it in memory.

moduleEventSubscriptions contains all topics the module wants to subscribe to. See Events.

First connection

On first connection the module is registered to Sensaru Cloud. To be able to connect there is one

more thing required: A client certificate. The client certificate needs to be requested from one of

the certificate administrators. To create the certificate a module ID (e. g. c1-device-management)

needs to be defined. This ID is part of the common name of the signed certificate and this ID is

used to identify the module within Sensaru Cloud.

The common name is a base64-encoded JSON. The JSON looks like this:

{"type":"module","id":"c1-device-management","index":1,"date":1578005399878,"version":1,"environment":"dev"}

Place the certificate and key in the locations specified in /etc/c1-module-proxy/main.conf (parameters

coreClientCert and coreClientKey).

Never ever upload these certificates to a code repository and never ever store them within Docker

images or containers. To use them within containers, use mounts.

•

•

•

Warning

Note

Warning

First connection Page 6

../../events/

Skip to content
High availability and scalability

Any module is required to be able to run in multiple instances over multiple datacenters. C1

Module Proxy and C1 Core already do a lot of the backend work, so you can start multiple

instances of C1 Module Proxy. When multiple module instances are available, C1 Core randomly

selects a module instance to direct requests to.

RPC

Requests originating from C1 Core

Your application needs to listen on the hostname and port specified in /etc/c1-module-proxy/main.conf

(parameters localRpcHost and localRpcPort) and handle JSON-RPC requests on an arbitrary path.

The path C1 Module Proxy sends the requests to can be specified in /etc/c1-module-proxy/main.conf

(parameter localRpcPath).

Every request coming from C1 Core is forwarded to your application. The response from your

application is forwarded back to C1 Core.

Requests originating from your application

When you want to call a RPC method on C1 Core or another module, send this request to the listen

address and the listen port specified in /etc/c1-module-proxy/main.conf (parameters httpListenAddress

and httpListenPort). The used path is irrelevant.

Calling moduleMethod

In contrast to the description here, when calling moduleMethod the response is returned directly

when C1 Module Proxy is used. This makes usage much easier. The underlying call is still

asynchronous.

More information

For more information read the section about inter-module communication.

REST

First read the section about module REST API's.

C1 Module Proxy takes the tunneled RPC call and translates it back to a REST call including HTTP

headers. The REST request is called on the same hostname and port as specified in localRpcHost

and localRpcPort in /etc/c1-module-proxy/main.conf .

High availability and scalability Page 7

../../rpc/inter-module/
../../rpc/inter-module/
../../rest/module-rest-api/

Skip to content

The RPC metadata Struct which includes for example the logged in user and principal is passed as

a base64-encoded JSON in the header field C1-VERIFIED-METADATA . Like this you can control data

access and only return data the user has access to.

An example header might look like this:

The decoded base64 from above contains the following JSON:

See the chapter about verified metadata for more information.

Authorization

It is mandatory that the logged-in user is only able to access data from it's own principal and data

of principals that are hirarchically below the user's principal level (e. g. a system distributor user

is allowed to access data from the system distributor's business partners).

Apart from that a user can be granted or denied permission

per RPC method or

per REST method/path combination.

Never ever allow a user access to data outside of it's own principal scope!

C1-VERIFIED-METADATA:
eyJpYnNIb21lQ2xpZW50SWQiOiIiLCJpYnNIb21lQ2xpZW50VXNlcnMiOltdLCJzb3VyY2VNb2R1bGVJZCI6Imlicy1jb3JlIiwidXNlcklic0hvbWVDbGllbnRzIjp7ImFjdGl2ZSI6e30sImFsbCI6e319LCJ1c2VySWQiOnsiYnAiOiIiLCJpZCI6IjE1N2Q5MzUwLTFkYjgtMTFlOS04ZTY2LTJmNzFhMGJlNGNjNSIsInNkIjoiIiwic3AiOiI0ODEwOTM1MC0xZGI2LTExZTktOGU2Ni0yZjcxYTBiZTRjYzUiLCJ0eXBlIjoxfX0=

{
"homeClientId": "",
"homeClientUsers": [],
"sourceModuleId": "c1-core",
"userHomeClients": {
"active": {},
"all": {}

},
"userId": {
"bp": "",
"id": "157d9350-1db8-11e9-8e66-2f71a0be4cc5",
"sd": "",
"sp": "48109350-1db6-11e9-8e66-2f71a0be4cc5",
"type": 1

}
}

1.

2.

Warning

Authorization Page 8

../../rpc/metadata/

Skip to content
Permission types

There are four possible permission types that can be assigned to a RPC method:

read

write

event

isAdmin

For REST currently no permission types can be assigned manually to REST methods or paths. This

is on our issue list. Currently permissions are set automatically in C1 Core. See below.

RPC permissions

The per RPC method permission is given by the group ACLs assigned to the user in C1 Core. This

permission is checked within C1 Core, so there are no checks required within the module.

For this to work, the module must pass ACL information to C1 Core upon module registration. This

ACL information is a JSON defined in main.conf in C1 Module Proxy (setting moduleAclInfo , see

above).

REST permissions

REST permission types are assigned automatically based on the HTTP method . The association is

as follows:

The permission is checked within C1 Core, so there are no checks required within the module.

1.

2.

3.

4.

HTTP method Permission type

DELETE write

GET read

PATCH write

POST write

PUT write

Permission types Page 9

	C1 Module Proxy
	Introduction
	Installation
	Using Docker

	Kubernetes
	Install manually
	Requirements
	Compilation

	Configure module
	First connection
	High availability and scalability
	RPC
	Requests originating from C1 Core
	Requests originating from your application
	Calling moduleMethod
	More information

	REST
	Authorization
	Permission types
	RPC permissions
	REST permissions

