
Skip to content

Page 1

Skip to contentACLs

C1 Core uses ACLs to check access from untrusted sources. Untrusted sources are:

Packets originating from C1 Proxy and sent by Homegear Cloudconnect.

Packets originating from a user's device or browser.

Trusted sources include all Sensaru Cloud modules except C1 Proxy. ACLs are not checked for

packets originating from trusted sources.

There are two types of ACLs:

Edge client ACLs

User ACLs

Homegear Cloudconnect instances have edge client ACLs assigned. Users have user ACLs

assigned.

ACL structure and storage location

There are two different types of ACLs:

User ACLs

and edge client ACLs.

ACLs can only be assigned to groups. They cannot be assigned directly to users or edge instances.

A user or edge instance can have multiple groups assigned.

User ACL

An user ACL looks like this:

•

•

1.

2.

1.

2.

{
"version": 1,
"moduleAccess": {

"c1-device-management": {
"global": {

"read": true,
"write":true,
"event":true,
"isAdmin":true

},
"rpcMethods": []

}
},

ACLs Page 2

Skip to content

"restAccess": {
"/user": ["GET", "POST", "PUT"],
"/sessions": ["GET", "POST", "PUT"],
"/test/*": ["GET", "POST", "PUT"],
"/test/no-access": {

"GET": false,
"POST": false,
"PUT": false

},
"/sessions/session": ["GET", "POST", "PUT"]

},
"assetAccess": ["6582", "5912.*", "7291.4.2", "51:*", "52:9893.3.2"],
"roleAccess": [200384, 709839]

}

Key Description

moduleAccess An object with ACLs that are applied when the user tries

to access a specific module.

moduleAccess\<module>\global Permissions that are applied globally for the module.

moduleAccess\<module>\global\read Access is allowed to RPC methods that have the read flag

assigned.

moduleAccess\<module>\global\write Access is allowed to RPC methods that have the write flag

assigned.

moduleAccess\<module>\global\event Access is allowed to RPC methods that have the event flag

assigned.

moduleAccess\<module>\global\isAdmin Access is allowed to RPC methods that have the admin

flag assigned.

moduleAccess\<module>\rpcMethods A list of rpcMethods access is allowed to. This is only

relevant when access is not granted by one of the global

flags.

restAccess An object containing the REST paths and HTTP methods

that access is allowed to. "/api/v1" is ommited. Wildcards

are allowed at any path position. The methods can be an

array or an object. In the latter case, permissions can be

denied explicitly. This is relevant for example if a path is

given access to by a wildcard and access to a sub path

should be denied.

User ACL Page 3

Skip to content

Differentiating administrative and non-administrative module REST access

Module administrative REST calls should be placed in the subpath /admin , e. g. /api/v1/modules/my-

module/admin . Like this the ACL can differentiate easily between administrative and non-

administrative REST calls.

Edge client ACL

An Edge client ACL looks like this:

Key Description

assetAccess A list of asset IDs this user has access to. Every entry

gives access to exactly the specified asset. * can be

specified as an wildcard at the last level to give access to

all assets of lower levels. E. g. to access all properties of

the economic unit "1234", specify ["1234.*"] ("*.123" is not

allowed - the wildcard must be the last character). To also

include access to the economic unit itself, "1234" must be

added as well: ["1234", "1234.*"] . Please note that * (a

single asterisk) grants access to all economic units. To

grant access to all assets when portfolios are used, add

the entry *: (asterisk followed by a colon). This grants

access to all assets of the business partner (this can be

used when no portfolios are used as well).

roleAccess A list of role IDs this user has access to. When empty, the

user has access to all roles. Every entry gives access to

exactly the specified role.

{
"version": 1,
"moduleAccess": {

"c1-device-management": {
"global": {

"read": true,
"write":true,
"event":true,
"isAdmin":true

},
"rpcMethods": []

}
}

}

Edge client ACL Page 4

Skip to content

With the flags there are three options ordered by precedence:

To set the flag to false.

To set the flag to true .

To not specify the flag at all.

The precedence is relevant when a user has multiple groups assigned. When a flag is set to false ,

then access is always denied. The false can't be overridden by a true of another group. When

there are no flags at all, access is denied as well.

The global flags are optional. For more granular permissions you can use rpcMethods . rpcMethods

from different groups are or 'd.

In the future it might be possible to add true/false to rpcMethods as well. Additionally it might be

possible that modules can specify custom flags.

Key Description

moduleAccess An object with ACLs that are applied when the edge client

tries to access a specific module. Use * for <module> to

apply the permissions to all modules.

moduleAccess\<module>\global Permissions that are applied globally for the module.

moduleAccess\<module>\global\read Access is allowed to RPC methods that have the read flag

assigned.

moduleAccess\<module>\global\write Access is allowed to RPC methods that have the write flag

assigned.

moduleAccess\<module>\global\event Access is allowed to RPC methods that have the event flag

assigned.

moduleAccess\<module>\global\isAdmin Access is allowed to RPC methods that have the admin

flag assigned.

moduleAccess\<module>\rpcMethods A list of rpcMethods access is allowed to. This is only

relevant when access is not granted by one of the global

flags.

1.

2.

3.

Edge client ACL Page 5

Skip to content
Associate flags with RPC methods

C1 Core doesn't know the RPC methods of a module. This means the module needs to send its RPC

methods and the associated flags to C1 Core. This is done by the aclInfo parameter of

registerModule() . When using C1 Module Proxy, it is provided by the setting moduleAclInfo . When

using libc1-module you can set it in the client info struct . The ACL info structure looks like this:

C1 Core methods relevant for ACL checks

We got two possible entry-points of untrusted method calls: Calls coming from users, i. e. all REST

calls, and information coming from devices not secured in our data center.

In addition there are semi-trusted sources, like devices within secure areas of system distributors

and business partners.

Calls originating from users

There are two types of calls:

REST calls with C1 Core as endpoint.

REST calls that are translated into RPC requests with modules as endpoints.

{
"rpcMethods": {

"myMethod1": "admin",
"myMethod2": "admin",
"myMethod3": "write"

},
"version":1

}

Key Description

rpcMethods The object containing the RPC method flags.

rpcMethods\<method>\admin Method requires the isAdmin ACL flag to be accessed.

rpcMethods\<method>\read Method requires the read ACL flag to be accessed.

rpcMethods\<method>\write Method requires the write ACL flag to be accessed.

rpcMethods\<method>\event Method requires the event ACL flag to be accessed.

1.

2.

Associate flags with RPC methods Page 6

Skip to content

For REST calls the ACL specifies paths and methods that access is allowed to. These ACL is

checked within RestServer::packetReceived() . REST calls that are translated into module RPC

requests are routed through RpcServer::userPreinvoke() and RpcServer::userInvoke() . Here the access

to the called module method is checked.

Calls originating from untrusted devices

All calls from untrusted devices are coming from C1 Proxy and routed through

RpcServer::moduleMethod() , i. e. ACL checks are performed there.

Calls originating from semi-trusted devices

Semi-trusted devices must be assigned to a specific business partner. This makes sure, these

devices only have access to data of this one principal.

RpcServer::registerModule

Modules pass information about their RPC methods - including tunneled REST requests - and the

required flags to registerModule() . The information is stored in database and held within memory.

RpcServer::moduleMethod

Checks if parameter 5 (homeClientId) is set and the source of the packet is C1 Proxy. When this

is the case, the edge ID is read (this information is trustable) and the associated groups and

associated users are retrieved from database. The group ACL information for the users and the

edge client is then read from database and module access is checked. The checked fields are

destination module ID and called method name. Additionally parameter 6 (homeClientUsers) of

the moduleMethod arguments is replaced with the users associated to the edge ID. Parameter

7 (userHomeClients) is overridden with an empty array.

When parameter 4 (userId) is set, the edge clients associated to this user are loaded from

database. Parameter 7 (userHomeClients) is overridden with this data. When parameter 5

(homeClientId) is empty, parameter 6 is overridden with an empty array. When the destination

of the packet is C1 Proxy, access is only granted, when the destination edge client ID is in the

list of edge clients associated to the user.

RpcServer::userInvoke

This method translates REST requests to RPC requests and therefore is the central point for

proxying user requests to modules. User ACL checks need to take place here.

1.

2.

Calls originating from untrusted devices Page 7

Skip to content
Associating users and edge client instances

Edge instances or modules storing data associated with an edge instance need to be able to access

user data or modules of the user's "owning" that edge instance. This means the edge client ACLs

need information about the users these edge instances are allowed to access and the user ACL

needs information about the edge instances the user has access to. The association between user

and edge instance is done by C1 Core. Whenever a user is associated or unassociated with an edge

instance, the user and edge client ACLs are updated.

ACLs, principals and principal users

Only end-users can be associated to an edge instance. End-users always have a business partner

assigned. Edge instances also have a business partner assigned always. On association these

business partners must match. An end-user can't be assigned to an edge instance of a different

business partner.

Example user ACL with full access

{
"version": 1,
"assignableModules": [

"c1-device-management"
],
"moduleAccess":
{

"*": {
"global": {

"read": true,
"write": true,
"event": true,
"isAdmin": true

},
"rpcMethods": []

}
},
"restAccess": {

"/*": [
"GET",
"POST",
"PATCH",
"PUT",
"DELETE"

]
},
"assetAccess": [],
"roleAccess": []

}

Associating users and edge client instances Page 8

	ACLs
	ACL structure and storage location
	User ACL
	Differentiating administrative and non-administrative module REST access

	Edge client ACL

	Associate flags with RPC methods
	C1 Core methods relevant for ACL checks
	Calls originating from users
	Calls originating from untrusted devices
	Calls originating from semi-trusted devices
	RpcServer::registerModule
	RpcServer::moduleMethod
	RpcServer::userInvoke

	Associating users and edge client instances
	ACLs, principals and principal users
	Example user ACL with full access

