
Skip to content

Page 1

Skip to contentOAuth

OAauth authentication must be used by all user interfaces to authenticate a user. It can also be

used to connect third party services like Amazon Alexa. Authentication is handled by C1 Auth

There is no authentication information passed when the module is opened. Instead the module

must redirect the user to the C1 Auth login page. If the user is logged in already, the login page

immediately redirects back to the module page and the user is logged in without seeing a login

form.

OAuth flow

C1 Auth requires a standard Authorization Code Flow. See https://datatracker.ietf.org/doc/html/

rfc6749 for details. The chapter Endpoint usage applies, so please read it before continuing

reading here.

URLs

The C1 Auth seed servers are as follows:

The login URLs are:

Branch URLs Port

Production https://n0r0c0.auth.sensaru.net, https://n1r0c0.auth.sensaru.net,

https://n2r0c0.auth.sensaru.net

4002

Staging https://n0r0c0.auth-staging.sensaru.net, https://n1r0c0.auth-

staging.sensaru.net, https://n2r0c0.auth-staging.sensaru.net

3002

Development https://n0r0c0.auth-dev.sensaru.net, https://n1r0c0.auth-

dev.sensaru.net, https://n2r0c0.auth-dev.sensaru.net

2002

Branch URLs

Production https://login.sensaru.net

Staging https://login-staging.sensaru.net

OAuth Page 2

../../architecture/endpoint-usage/

Skip to content

The C1 Core seed servers are as follows:

Redirect to login page

When the user is not logged in, he needs to be redirected to the login page.

The following GET parameters need to be passed to the login page:

Branch URLs

Development https://login-dev.sensaru.net

Branch URLs REST and

JSON-RPC

port

Binary

RPC port

Production https://n0r0c0.core.sensaru.net, https://

n1r0c0.core.sensaru.net, https://

n2r0c0.core.sensaru.net

4001 4000

Staging https://n0r0c0.core-dev.sensaru.net, https://

n1r0c0.core-dev.sensaru.net, https://

n2r0c0.core-dev.sensaru.net

3001 3000

Development https://n0r0c0.core-dev.sensaru.net, https://

n1r0c0.core-dev.sensaru.net, https://

n2r0c0.core-dev.sensaru.net

2001 2000

Parameter Description

client_id The client ID assigned to the module's UI. The client ID and client secret

are randomly generated and must be registered to C1 Auth in order to

work.

response_type Only code is supported.

state See description of state below.

code_challenge See description of code_challenge below.

Redirect to login page Page 3

Skip to content

state

The state variable enforces, that a login really is initiated by the module's UI. It prevents cross

login requests. Either a random string can be used as state variable. This string needs to be stored

and verified when the user is redirected back from the login page. Alternatively we can use a

signed random value. This enables us to just check the signature when the user is redirected back

and we don't have to store the state anywhere.

We can also sign additional metadata in the state string. The recommendation is:

An example implementation in PHP might look like this:

Parameter Description

code_challenge_method Only S256 is supported.

sp The ID of the system provider.

sd The ID of the system distributor.

bp The ID of the business partner.

Metadata Description

Time A time stamp to know when the state was generated. The state should only be

valid for a short amount of time (e. g. 10 minutes)

Random

data

Random data to make hacking more difficult

Principal The principal ID to prevent logging in as a different principal than requested. The

principal IDs must be passed to the module's UI as GET query parameters.

function getState() : string
{
 global $systemProvider;
 global $systemDistributor;
 global $businessPartner;
 $keyspace = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';

 $pieces = [];
 $max = mb_strlen($keyspace, '8bit') - 1;
 for ($i = 0; $i < 64; ++$i)
 {

Redirect to login page Page 4

Skip to content

code_challenge

Sensaru Cloud uses "Proof Key for Code Exchange" (PKCE) to mitigate the risk of interception

attacks. Read https://datatracker.ietf.org/doc/html/rfc7636 for details. The code verifier is just a

random string. Here's an example in PHP on how to generate a code verifier:

The generated code verifier is hashed and base64-encoded to generate code_challenge :

This hashed code challenge is sent to the login page. The code verifier needs to stored (e. g. in the

session). When the user is redirected back and the authorization code is exchanged for the access

token, the (unhashed) code verifier must be sent to the authorization server.

Process redirect from login page

When the user is redirected back to the module page, two GET parameters are passed: code and

state . state matches the one you passed to the login page. When the data is signed, the signature

needs to be verified. Otherwise it is required to check it state matches the stored one. It is also

 $pieces[] = $keyspace[random_int(0, $max)];
 }
 $randomString = implode('', $pieces);
 $data = time().','.$randomString.','.$systemProvider.','.$systemDistributor.','.$businessPartner;

 $keyId = openssl_pkey_get_private('file://'.__DIR__.'/../stateCerts/key.pem');
 if($keyId === false) die('Could not read private key.');
 $signature = '';
 if(openssl_sign($data, $signature, $keyId, OPENSSL_ALGO_SHA512) === false)
 {
 openssl_pkey_free($keyId);
 die('Could not generate state.');
 }
 openssl_pkey_free($keyId);
 return base64_encode($data.';'.base64_encode($signature));
}

function getCodeVerifier()
{
 $keyspace = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-._~';

 $pieces = [];
 $max = mb_strlen($keyspace, '8bit') - 1;
 for ($i = 0; $i < 128; ++$i)
 {
 $pieces[] = $keyspace[random_int(0, $max)];
 }
 return implode('', $pieces);
}

$codeChallenge = base64_encode(hash('sha256', $codeVerifier, true));

Process redirect from login page Page 5

Skip to content

required to check if state has expired. Here's an example on how to check the signature and for

expiration in PHP:

When the signature is valid, the access token can be requested. For this a HTTP POST needs to be

sent to C1 Auth to path /api/v1/oauth/token with the following data using application/x-www-form-

urlencoded as content type:

On success the access and refresh tokens are returned as a JSON. Both need to be stored in the

user's session. The validity typically is 1 hour. Before this, the access token should be refreshed

using the refresh token.

list($data, $signature) = explode(';', base64_decode(urldecode($_GET['state'])));
 if(strlen($data) > 0 && strlen($signature) > 0)
 {
 list($time, $randomString, $stateSystemProvider, $stateSystemDistributor, $stateBusinessPartner) =
explode(',', $data);
 if($stateSystemProvider === '') $stateSystemProvider = '0';
 if($stateSystemDistributor === '') $stateSystemDistributor = '0';
 if($stateBusinessPartner === '') $stateBusinessPartner = '0';
 $timeDifference = time() - $time;
 if($timeDifference >= 0 && $timeDifference < 600)
 {
 $keyId = openssl_pkey_get_public('file://'.__DIR__.'/../stateCerts/cert.pem');
 $result = openssl_verify($data, base64_decode($signature), $keyId, OPENSSL_ALGO_SHA512);
 openssl_pkey_free($keyId);

 if($result === 1)
 {
 .
 .
 .
 }
 }
 }
}

Parameter Description

grant_type authorization_code

code The authorization code just received as GET parameter code .

client_id The client ID to identify the module.

client_secret The client secret to authenticate the module.

code_verifier The previously generated code verifier which was sent as a hashed value to the

login page.

Process redirect from login page Page 6

Skip to content

The access and refresh token contain information that must be checked. With PHP this looks like

this:

In particular it is mandatory to verify that the following access token and refresh token fields

match the information within the module:

These checks are mandatory to have a secure system! Otherwise the system might be hacked.

$keyParts = explode(',', base64_decode($accessToken));
$keyParts2 = explode(',', base64_decode($refreshToken));
if(count($keyParts) >= 8 &&
 count($keyParts2) >= 8 &&
 $keyParts[7] === $clientId &&
 $keyParts[2] === $stateSystemProvider &&
 $keyParts[3] === $stateSystemDistributor &&
 $keyParts[4] === $stateBusinessPartner &&
 $keyParts2[7] === $clientId &&
 $keyParts2[2] === $stateSystemProvider &&
 $keyParts2[3] === $stateSystemDistributor &&
 $keyParts2[4] === $stateBusinessPartner)
{
 //Save REST object state to session.
 $rest->sessionSave();
 header('Location: '. $_SERVER['PHP_SELF']);
 die();
}
else
{
 $rest->logout();
 die('Unauthorized');
}

Field name Field index Must match

Client ID 7 The client ID of the module

System provider 2 The system provider in state

System distributor 3 The system distributor in state

Business partner 4 The business partner in state

Warning

Process redirect from login page Page 7

Skip to content
Verify with C1 Core that user is authenticated and access token belongs to your

module

At last the access token must be used to query the user from C1 Core. The response must be

checked for validity.

To query the user information, send a GET request to /user on one of the C1 Core endpoints.

An example check in PHP looks like this:

When the response is valid, the user is successfully logged in.

isset($result['success']) && $result['success'] === true &&
isset($result['result']['authenticated']) && $result['result']['authenticated'] === true && //Check if the access
token is valid
isset($result['result']['clientId']) && $result['result']['clientId'] === $clientId //Check if the access token
belongs to our service

Verify with C1 Core that user is authenticated and access token belongs to your modulePage 8

	OAuth
	OAuth flow
	URLs
	Redirect to login page
	state
	code_challenge

	Process redirect from login page
	Verify with C1 Core that user is authenticated and access token belongs to your module

